Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

H. S. Yathirajan, ${ }^{\text {a }}$ B. Narayana, ${ }^{\text {b }}$ B. Ashalatha, ${ }^{\text {b }}$ B. K. Sarojini ${ }^{\text {c }}$ and Michael Bolte ${ }^{\mathrm{d}_{*}}$

${ }^{\text {a }}$ Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ${ }^{\text {b }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574 199, India, ${ }^{\text {c }}$ Department of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India, and ${ }^{\mathbf{d}}$ Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.037$
$w R$ factor $=0.102$
Data-to-parameter ratio $=13.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3-(6-Methoxy-2-naphthyl)-1-(2-thienyl)-prop-2-en-1-one

The molecule of the title compound, $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$, is essentially planar. The central $\mathrm{C}=\mathrm{C}$ double bond is trans-configured. Geometric parameters are in normal ranges.

Comment

The title compound, (I), is a biologically active compound. Chalcones and their heterocyclic analogues show various biological effects, e.g. anti-inflammatory, antitumour, antibacterial, antitubercular, antiviral, antiprotozoal, gastroprotective etc. (Opletalova \& Sedivy, 1999). The cytotoxic, anticancer, antiviral, antiprotozoal and insecticidal activities of a variety of chalcones have been reviewed, as well as the enzyme-inhibitory properties and miscellaneous activities of some of these molecules (Dimmock et al., 1999). In addition, with appropriate subsitutuents, chalcones are a class of nonlinear optical (NLO) materials (Fichou et al., 1988; Goto et al., 1991; Butcher et al., 2006; Harrison et al., 2006). The crystal structures of 3-hydroxy-1,3-bis(2-thienyl)prop-2-en-1-one (Baxter et al., 1990), 1,3-bis(4-chlorophenyl)prop-2-en-1-one (Wang et al., 2005), 1-(4-bromophenyl)-3-(2-thienyl)prop-2-en-1-one (Patil et al., 2006) and 1-(4-chlorophenyl)-3-(2-thienyl)prop-2-en-1-one (Ng et al., 2006) have been reported. In continuation of our work on the crystal structures of chalcones (Yathirajan, Sarojini, Narayana, Ashalatha \& Bolte, 2006; Yathirajan, Sarojini, Bindya, Narayana \& Bolte, 2006; Yathirajan, Sarojini, Narayana, Bindya \& Bolte, 2006), and in view of their importance, we present here the crystal structure of compound (I).

(I)

A perspective view of compound (I) is shown in Fig. 1. Bond lengths and angles can be regarded as normal (Cambridge Structural Database, Version 5.27, November 2005, updated August 2006; MOGUL, Version 1.1; Allen, 2002). The aliphatic double bond is trans configured. The molecule is essentially planar (r.m.s. deviation for all non-H atoms is $0.056 \AA$).

Experimental

Compound (I) was synthesized according to the method reported in the literature (Vogel, 1989) in a yield of 85%. The compound was
purified by recrystallization from ethanol. Crystal growth was carried out in an acetone-toluene ($50: 50 \mathrm{v} / \mathrm{v}$) solvent mixture by the slow evaporation technique (m.p. 418-420 K). Analysis for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$, found (calculated): C 73.40 (73.44), H 4.75 (4.79)\%.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S} \\
& M_{r}=294.35 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=3.9155(3) \AA \AA \\
& b=10.6776(8) \AA \\
& c=33.521(3) \AA \\
& \beta=93.164(7)^{\circ} \\
& V=1399.3(2) \AA^{3}
\end{aligned}
$$

Data collection

Stoe IPDS II two-circle	10698 measured reflections
\quad diffractometer	2641 independent reflections
ω scans	2315 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.043$
$(M U L A B S ;$ Spek, 2003; Blessing,	$\theta_{\max }=25.7^{\circ}$
$1995)$	
$T_{\min }=0.951, T_{\max }=0.970$	

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.102$
$S=1.05$
2641 reflections
192 parameters
H-atom parameters constrained

$$
\begin{aligned}
& \begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0685 P)^{2}\right. \\
& \quad+0.1527 P] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.28 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.34 \mathrm{e}^{-3} \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \quad \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.036
\end{aligned}{ }^{(5)}
\end{aligned}
$$

H atoms were found in a difference map but they were subsequently refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})$ $=1.2 U_{\text {eq }}(\mathrm{C})$, or $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$. The methyl group was allowed to rotate but not to tip.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: $X-A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

BKS thanks the AICTE, Government of India, for financial assistance through the Career Award for Young Teachers Scheme.

Figure 1
The molecular structure of the title compound, with the atom numbering; displacement ellipsoids are drawn at the 50% probability level.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Baxter, L. A. M., Blake, A. J., Heath, G. A. \& Stephenson, T. A. (1990). Acta Cryst. C46, 508-510.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Butcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. \& Narayana, B. (2006). Acta Cryst. E62, o1659-o1661.

Dimmock, J. R., Elias, D. W., Beazely, M. A. \& Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.
Fichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. \& Nakayama, M. (1988). Jpn J. Appl. Phys. 27, L429-L430.

Goto, Y., Hayashi, A., Kimura, Y. \& Nakayama, M. (1991). J. Cryst. Growth, 108, 688-698.
Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. \& Indira, J. (2006). Acta Cryst. E62, o1647-o1649.

Ng, S.-L., Patil, P. S., Razak, I. A., Fun, H.-K. \& Dharmaprakash, S. M. (2006). Acta Cryst. E62, o3200-o3202.
Opletalova, V. \& Sedivy, D. (1999). Ceska Slov. Farm. 48, 252-255.
Patil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. \& Dharmaprakash, S. M. (2006). Acta Cryst. E62, o3718-o3720.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.
Vogel (1989). Vogel's Text book of Practical Organic Chemistry, edited by B. S. Furniss, A. J. Hannaford, P. W. G. Smith \& A. R. Tatchell, 5th edition, p. 1034. London: Longman Group UK Ltd.

Wang, L., Yang, W. \& Zhang, D.-C. (2005). Acta Cryst. E61, o2820-o2822.
Yathirajan, H. S., Sarojini, B. K., Bindya, S., Narayana, B. \& Bolte, M. (2006). Acta Cryst. E62, o4046-o4047.
Yathirajan, H. S., Sarojini, B. K., Narayana, B., Ashalatha, B. V. \& Bolte, M. (2006). Acta Cryst. E62, o3964-o3965.

Yathirajan, H. S., Sarojini, B. K., Narayana, B., Bindya, S. \& Bolte, M. (2006). Acta Cryst. E62, o4048-o4049.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

